
JOURNAL OF SOLID STATE CHEMISTRY *,29-37 (1992) 

Moffitt’s Theorem as a Bridge between the Delocalized Picture 
of Band Theory and the Local Picture of Resonance Structures 
in a Solid: Peierls Distortions and Conductivity 
of Polyacetylene 

P. KARAFILOGLOU 

Faculty of Chemistry, Aristotle University of Thessaloniki, 
P.O. Box 135, 54006 Thessaloniki 17, Greece 

Received September 16, 1991; in revised form December 6, 1991; accepted December 13, 1991 

By extending to solid state chemistry a methodology developed in molecular chemistry, we show how 
one can calculate the contribution of a resonance structure in a solid by using the Bloch orbitals or, 
in general, the delocalized crystal orbitals. The method is applied to polyacetylene: the Peierls distor- 
tions and the conductivity of this system are explained by examining the contributions of some ionic 
resonance structures. 0 1992 Academic Press, 1~ 

1. Introduction 

The use of methods and concepts devel- 
oped initially in molecular chemistry has 
been very useful in solid state chemistry 
(1-3). On the other hand, the band theory 
and concepts such as Fermi surfaces or 
charge density waves (CDWs), originated 
from solid state physics, are widely used in 
solid state chemistry (4). For example, the 
nesting of Fermi surfaces and the associated 
CDWs in low-dimensional solids (5) is actu- 
ally the principal tool to explain and ratio- 
nalize the (anti-) conducting properties of 
these systems. 

In molecular chemistry, resonance struc- 
tures within the “resonance or mesomeric 
theory” are a very useful tool, especially for 
an experimental chemist. Recently, we have 
developed a methodology allowing the cal- 
culation of resonance structures of a bond 
or a functional group inside a given molecule 

by analyzing the traditional molecular or- 
bital (MO) wavefunction: the delocalized 
MO-wavefunction is decomposed in a to- 
tally local (6) one by means of Moffitt’s theo- 
rem (7) and then the contributions of reso- 
nance structures are calculated as the 
expectation values of multielectron density 
operators (8) in the frame of the multielec- 
tron population analysis (9). 

Resonance structures are useful not only 
in molecular chemistry, but also in solid 
state chemistry. Since the early years of 
quantum chemistry, a theory of resonance 
of valence-bond structures of metals was 
established, and applications were given in 
actual problems of solid state (20-12). 

The band theory gives a delocalized pic- 
ture of a solid, exactly as the usual MO 
theory gives the (most) delocalized picture 
of a molecule. Contrarily, in resonance the- 
ory, an electron pair is not delocalized over 
the whole system, and therefore the local 
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FIG. 1. Ionic and covalent resonance structures of a double bond, -X=Y-. 

pictures of this theory are closer to the ex- 
perimental chemist’s thinking and reason- 
ing. Both approaches seem to be mutually 
exclusive, even though it is well known that 
both can converge to the same result, espe- 
cially when they are refined (13). The suc- 
cess of the projection of Htickel MOs into a 
Heisenberg-type space (composed of neu- 
tral spin alternant and nonalternant situa- 
tions) (14) is also a consequence of the 
equivalence of these two approaches. The 
purpose of this work is to give a simple 
bridge between the delocalized picture of 
band theory and the local one of resonance 
structures by extending our methodology, 
which is established in molecular chemistry. 
Moffitt’s theorem is, therefore, formulated 
for solid state, and an application is given 
for polyacetylene (PA). In the present work, 
we wish to show also how a simple inspec- 
tion of the Bloch orbitals of PA can lead to 
useful conclusions for the contributions of 
some resonance structures which are crucial 
for Peierls distortions and conductivity 
of PA. 

2. Method and Results 

2.a. Resonance Structures 
in Polyacetylene 

In molecular chemistry, a double bond, 
-X=Y-, can be considered as the “reso- 
nance” of the ionic and covalent structures 
with various contributions, depending on 
the molecular system (see Fig. 1). 

In analogy with this traditional chemical 
point of view, one can consider the ground 
state of PA as the “resonance” of similar 
structures, as shown in Fig. 2. 

The ionic structure I, is representative of 
the CDWs in PA; since from band theory it 
is well known that CDWs are directly re- 
lated to the conductivity (5), one can sup- 
pose that if a structure like I, has an im- 
portant contribution, one can expect 
insulating properties, and if it has very small 
contribution, a nonnegligible conductivity. 

The ionic structure Z, can be considered 
to be responsible for the Peierls distortions 
by both the (+ , -) attractions and the (+ , 
+), or (-, -), repulsions; contrarily, struc- 
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FIG. 2. Various ionic and covalent resonance structures of polyacetylene. 
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ture I, does not contribute to Peierls distor- 
tions, since the (+, -) attractions are 
equally distributed for all the C-C bonds. 
Consequently, the contributions of these 
two structures, Z1 and Z,, must also be cru- 
cial for the Peierls distortions in PA. 

All structures illustrated in Fig. 2 are ac- 
companied, of course, by symmetric ones 
having obviously the same contributions. 
For example, structure I, (. . . , -, +, -, 
+, -, +, -, . . .) is accompanied by its 
symmetric one (. . . , +, -, +, -, +, -, +, 
. . . ), structure Z, (. . . , -, +, +, -, -, +, 
+ . .) by (. . . , +, -9 -7 +, f, -7 -7 
. ’ ) etc. Since the symmetric structures . . ) 
have exactly the same role for the conduc- 
tivity and Peierls distortions, in what fol- 
lows we deal only with the structures illus- 
trated in Fig. 2. 

In analogy with molecular chemistry, the 
contributions of the various structures of 
Fig. 2 can be calculated as the expectation 
values of some multielectron density opera- 
tors (8). For example, the contribution of 
the CDW structure, I,, is the expectation 
value of the density operator 

(where 4 are the P,-AOs of PA); it gives the 
probability to find an electron pair in the A0 
4, when simultaneously the A0 &is empty, 
simultaneously an electron pair is located in 
43, etc. 

The calculation of such expectation val- 
ues needs the knowledge of the expansion 
coefficients TI, , TI, etc., in the following 
wave function, @: 

(a,> = T&,) + TI,IQ,~) + * * * + TI,I@I) 
+ . . . Tc,I@c,) + * * -, (la) 

or shortly 

I@,> = z T&W. (lb) 

The basis set {Q}, that is, al, . . . $, , etc., 
is composed from totally local Slater deter- 

minants, which correspond to the chemical 
graphs I, , . . Z, etc. of Figure 2: 

a*, = II . . ’ 4Qk#+h#3~5 ’ . ‘II 

(2) 

@Ix = II * * ’ 4?&~4&i#%43 ’ . ‘II 
As in molecular chemistry, a totally local 

wavefunction, as the above a, could be cal- 
culated, in principle, from valence-bond cal- 
culations; an alternative way is to start from 
the usual delocalized MO wavefunction and 
then decompose it to a local one (6, 8, 9) 
using Moffitt’s theorem (7). 

By assuming that the electron population 
analysis of the delocalized wavefunction is 
made in a model orthogonal AO- basis set 
(as for instance the P,-AOs of polyenes used 
in solid state physics, within the Hubbard 
method (15)), the expectation values of an 
above-mentioned density operator are given 
very simply as the square of the expansion 
coefficients, T*. 

2.b. Formulation of MofJitt’s Theorem in 
Solid State Chemistry 

The Bloch equations, within the LCAO 
(linear combination of atomic orbitals) ap- 
proximation, are the basic equations in solid 
state chemistry: 

lClk = C eikna 4,) 
n 

(3) 

where 4, are AOs, k is the wavenumber, 
and a is the lattice spacing. 

Starting from delocalized crystal orbitals, 
as the above Bloch orbitals, $k, one can 
calculate the expansion coefficients, T@, in 
the wavefunction Q given in relation (1) by 
means of Moffitt’s theorem (7), which is 
known from molecular chemistry. In solid 
state chemistry, this theorem can be formu- 
lated as follows: 

The expansion coefjicient, T,, of a given 
local structure @ = 11 . * . 4, * * - 4, . - * 11 is 
the product of two determinants containing 
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the LCAO coefficients of the occupied crys- 
tal orbitals, q!tk, with a-spin electrons (one 
determinant) and P-spin electrons (second 
determinant). These determinants are built 
in such a way that column indices are the 
wave numbers, k, of the occupied crystal 
orbitals, and line indices are those of the 
AOs, which are occupied in ?D. 

performing a 7r/4 rotation in these degener- 
ate orbitals): in the AO-positions 1, 3, 5, 

where I,IJ~ has zero LCAO coefficients, 
ii ‘has nonzero coefficients; the opposite 
occurs for the AO-positions 2, 4, 6, . . . . 

Moffitt’s theorem is now applied for the 
various possibilities of electron spin occupa- 
tion of the degenerate orbitals I/I* and I&: 

2.~. Application of MofJitt’s Theorem in 
Polyacetylene (Half-Filled Bands) 

(i) I/J* and & have antiparallel spins. Let 
us consider that there is an electron with 
a-spin in crystal orbital I/J,, and an electron 

Let us consider first that the lattice spat- with p-spin in h: tj~,$i -: . . . I/J~$~. Ac- 
ing, a, is equal for all the C-C bonds of cording to Moffitt’s theorem, the expansion 
PA. Since the band is half-filled, the highest 
(singly) occupied crystal orbitals I/J~ and &, 

coefficients, Tt, and TIx, of structures I, and 
Z, (see Fig. 2 and expressions (2)) are calcu- 

of a 4n fragment (16) are given in Fig. 3 (after lated as follows: 

n 
II 

Tt,= 1 
3 
5 

k=l . . . . A 

+ . . . . + 

where + or - means positive or negative 
LCAO coefficients, 

n 
II 

Ttx = 1 
4 
5 

k=l . . . . A 

n 
II 

x i 

3 

5 

n 
II 

x T 
5 
5 

k=i . . . . B 

k=f . . . . jj 

= 0, 

# 0. 
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The T1] is zero since there is one column in 
the determinant of P-spins which involves 
only zeros; the contribution, therefore, of 
the CDW structure I,, T:, , is zero, while 

Y 
,, ‘.\A 

that of Z, is different from zero. 
The same result is also true by considering 

an inverse spin occupation of $A and $a : $I, 
$7.. . . I&& (the T$ is zero since the deter- 
minant of a-spins is, in this case, zero). 

*\ f 
(ii) I)* and I,!I~ have parallel spins. Let us . 

consider that both I/J* and h have a-spin 
electrons: 

Jll+i.. . IcI,IcIA h3 f 

The application of Moffitt’s theorem gives 

FIG. 3. The highest occupied (and degenerate) crystal 
orbitals IJJ~ and I/I~ in the half-filled band of polyacet- 
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In the present case, the contribution of The same result is also true for the spin 
the CDW structure, I,, is also zero, while occupation $!q$i . . . . I$-&E (the T[, is zero 
that of Z, is different from zero. since the determinant of P-spins is zero). 
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In all the above examples we have sup- 
posed that all the C-C bonds are equal, and 
therefore there are (at least) two singly occu- 
pied crystal orbitals having (after a 7~/4 rota- 
tion) the shapes of Fig. 3. If we suppose that 
the C-C bonds have alternate short and long 
lengths, the alternance of zero in crystal or- 
bitals, as $A and I,/J~, is destroyed, and there- 
fore both structures I, and Z, have nonzero 
contributions. 

All these qualitative predictions have 
been verified by numerical calculations in 
polyenes with a small number of atoms. For 
the case of equal C-C bond lengths, we have 
considered the systems of cyclobutadiene 
and cyclooctatetraene. The MO-wavefunc- 
tions are obtained by PPP calculations with 
standard parametrization (17); the Har- 
tree-Fock MO-wavefunction is improved 
by configuration interaction (CI) calcula- 
tions in order to take into account important 
correlation effects, such as spin polarization 
(18). In the case of cyclobutadiene we have 
performed full-C1 calculations and then the 
ground singlet state of a multideterminantal 
MO-wavefunction is used in order to calcu- 
late the contributions of the resonance 
structures as usual (8, 9). In the case of 
cyclooctatetraene, the CI calculations are 
performed by means of the CIPSI method 
(Z9), which selects iteratively the CI space; 
since the criterion in the second-order cor- 
rection in energy is chosen very small (5 x 
IO-’ au), our CI can be considered as quasi- 
total. The final space of the Slater determi- 
nants which are selected by the CIPSI 
method is then diagonalized, and the contri- 
butions of the resonance structures are cal- 
culated from the ground singlet MO-multi- 
determinantal eigenvector. In other cases, 
when the cyclic symmetry with equal the 
C-C bonds is destroyed, as in a linear poly- 
ene with a limited number of carbon atoms, 
numerous previous calculations (20), in ac- 
cordance with fundamental chemical intu- 
ition, show that the CDW structure I, has 
nonzero contribution (more precisely, the 

most important contribution between the 
ionic structures). 

2.d. Peierls Distortions and Conductivity 
of Polyacetylene 

We have shown that the CDW structure, 
I,, has zero contribution if all the C-C bond 
lengths are equal, and nonzero if these 
bonds have alternating short and long 
lengths. Ionic structures with nonalternant 
charges, such as Z, , have nonzero contribu- 
tions in both cases. By using these results 
one can give alternative explanations for 
Peierls distortions and conductivity in PA 
by using the chemist’s picture of resonance 
structures, rather than the picture of elec- 
tron pairs delocalized in the crystal orbitals 
issued from band theory (21). 

If the C-C bonds were equal in PA, then 
the CDW structure I,, which does not favor 
the Peierls distortions, should have been 
forbidden; therefore, the remaining struc- 
tures such as Z, (. . . -, +, +, -,-, +, + 
. . . ), which are allowed, can easily cause a 
shortening and an elongation of the C-C 
bonds by both the (+, -) attractions and 
(+, +), or (-, -), repulsions. 

Band theory predicts that the PA with 
equal the C-C bond lengths should be a 
conductor. Since, as is well known (5), the 
predominance of CDWs is a strong factor 
against conduction, the fact that resonance 
structure I, is zero explains in terms of reso- 
nating structures this (hypothetical) conduc- 
tivity. Similarly, the fact that in PA (with 
alternating bond lengths) the contribution of 
structure I, is important explains also its 
very low conductivity. 

The well-known increasing conductivity 
of PA by doping (22) can also be explained 
from the decrease of the contribution of the 
CDW resonance structure, Z1. Let us con- 
sider the case that the doping is p-type (e.g., 
the dopants are electron acceptors). Such a 
type of doping favors resonance structures 
which exhibit negative charges to the 
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FIG. 4. Ionic structures which are favored from various arrangements of p-type dopants: in (a) and(b) 
the dopants are located at both sides of the polyacetylenic chain (realistic cases), while in (c) only at 
one side (nonrealistic case). 

neighbouring to the dopants carbon atoms, 
as it is shown in Figs. 4a and 4b (the positive 
charges in cycles represent schematically 
the dopants); these structures exhibit an 
asymmetric distribution of the (+) and (-) 
charges and are quite numerous in PA. In 
the undoped PA they have small contribu- 
tions due to the repulsions of (+ , +) or (- , 
-) charges, whereas the CDW structure I,, 
as mentioned in a previous section, has the 
most important contribution. In the doped 
PA the contribution of I, must decrease ac- 
cording to the following reasons: 

(i) Since the wavefunction @ is normal- 
ized to 1, the increment by doping of the 
contributions of the numerous structures 
with the asymmetric (+) and (-) charge dis- 
tributions leads to a decrease of the contri- 
bution of I,. 

(ii) Since I, exhibits all the (+) and (-) 
charges in separate sides of a polyacetylenic 
chain, the only possible arrangement of the 
dopants around this chain which could favor 

structure I, is a symmetric one, shown in 
Fig. 4c: the dopants are located only at the 
one side of the polyene. However, this ar- 
rangement is not realistic, the main reason 
being (apart from the dopant-dopant repul- 
sions) the fact that one polyacetylenic chain 
is not alone inside the solid, and dopants are 
present at least in two sides (in-plane or/ 
and out-of-plane) of each chain; all these 
arrangements of the dopants are asymmetric 
and therefore decrease the contribution of 
the CDW structure I,, which has the most 
symmetric distribution of (+) and (-) 
charges. 

More often the effect of the p-type doping 
is strong enough so that one can consider 
that there is a transfer of the entire positive 
charges to PA (22b). In this case, the CDW 
resonance structure is destroyed due to the 
insertion of the additional charges in the 
polyacetylenic chain. In other words, the 
electronic configuration shown in Fig. 4c is 
not favored, not only for the above reasons, 
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but also due to the strong electron transfer 
from PA to the dopants. Of course, similar 
arguments are also valid for the case of 
n-type doping (e.g., when the dopants are 
electron-donating systems). 

3. Conclusion 

As in molecular chemistry delocalized 
MO-wavefunctions are not easily interpre- 
ted. In solid state chemistry the picture re- 
sulting from the band theory can also be 
difficult to be understood by an experimen- 
tal chemist; this is essentially due to the fact 
that the picture of electron pairs delocalized 
over the whole molecule is far from the 
chemist’s usual thinking in terms of bonds. 
On the other hand, band calculations are 
very familiar in solid state chemistry, in var- 
ious approximation levels (22,23). By using 
Moffitt’s theorem we hope to benefit from 
both 

(i) the facility in calculations using the 
Band theory, and 

(ii) the chemical interpretation which is 
based on the picture of local structures. 

In the case of PA we have showed how 
one can understand the Peierls distortions 
and the very low conductivity of undoped 
PA, as well as the effect of the doping on its 
conductivity, by examining the contribu- 
tions of chemical structures as I,, Z,, etc., 
directly from the delocalized crystal orbit- 
als. This type of decomposition of crystal 
orbitals to resonance structures will be fur- 
ther used in order to understand the (anti-) 
ferromagnetic properties of other interest- 
ing systems such as the nonclassical poly- 
mers (24). 
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